Publications

List of publications

For a full list of publications, please visit:

 ORCID ID:  0000-0003-2439-8802

 PUBLONS: A-5986-2009

  • Ines Escher, Annica I Freytag, Juan Miguel Lopez del Amo, Philipp Adelhelm (2022) Solid-state NMR study on the structure and dynamics of graphite electrodes in sodium-ion batteries with solvent co-intercalation. Batteries & Supercaps  <link>

  • Zhenggang Zhang, Kang Dong, Katherine A Mazzio, André Hilger, Henning Markötter, Fabian Wilde, Tobias Heinemann, Ingo Manke, Philipp Adelhelm (2022) Phase Transformation and Microstructural Evolution of CuS Electrodes in Solid-State Batteries Probed by in-situ 3D X-ray Tomography. Advanced Energy Materials  <link>

  • Yuvashri Jayamkondan, Philipp Adelhelm, Prasant Kumar Nayak (2022) Integrated Ni and Li-rich Layered Oxide Cathode Materials for High Voltage Cycling in Rechargeable Li-ion Batteries. ChemElectroChem  <link>

  • Lianbo Ma, Ji Qian, Yongtao Li, Yuwen Cheng, Shanying Wang, Ziwei Wang, Cheng Peng, Konglin Wu, Jie Xu, Ingo Manke, Chao Yang, Philipp Adelhelm, Renjie Chen (2022) Binary Metal Single Atom Electrocatalysts with Synergistic Catalytic Activity toward High-Rate and High Areal-Capacity Lithium–Sulfur Batteries. Advanced Functional Materials <link>

  • Guillermo Alvarez Ferrero, Gustav Åvall, Katherine A Mazzio, Youhyun Son, Knut Janßen, Sebastian Risse, Philipp Adelhelm (2022) Co-Intercalation Batteries (CoIBs): Role of TiS2 as Electrode for Storing Solvated Na Ions. Advanced Energy Materials <link>

  • Philip Minnmann, Florian Strauss, Anja Bielefeld, Raffael Ruess, Philipp Adelhelm, Simon Burkhardt, Sören L Dreyer, Enrico Trevisanello, Helmut Ehrenberg, Torsten Brezesinski, Felix H Richter, Jürgen Janek (2022) Designing Cathodes and Cathode Active Materials for Solid‐State Batteries. Advanced Energy Materials  <link>

  • Yanan Sun, Philipp Adelhelm (2022) Lifting the redox potential of layered sulfide cathodes for sodium-ion batteries. Matter  <link>

  • Palaniselvam Thangavelu, Annica Freytag, H Moon, Knut Arne Janssen, Stefano Passerini, Philipp Adelhelm (2022) Tin-Graphite Composite as a High-Capacity Anode for All-Solid-State Li-Ion Batteries. Journal of Physical Chemistry C.  <link>

  • Gustav Avall, Philipp Adelhelm (2022) Solution to dissolution. Nature Energy. <link>

  • Yaolin Xu, Kang Dong, Yulin Jie, Philipp Adelhelm, Yawei Chen, Liang Xu, Peiping Yu, Junghwa Kim, Zdravko Kochovski, Zhilong Yu, Wanxia Li, James Lebeau, Yang Shao-Horn, Ruiguo Cao, Shuhong Jiao, Tao Cheng, Ingo Manke, Yan Lu (2022) Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials  <link>

  • Sai Gourang Patnaik, Ines Escher, Guillermo A Ferrero, Philipp Adelhelm (2022) Electrochemical study of Prussian White Cathodes with Glymes – pathway to Graphite based Sodium ion Battery Full cells. Batteries and Supercapacs  <link>

  • Ines Escher, Matthias Hahn, Guillermo A. Ferrero, Philipp Adelhelm (2022) A Practical Guide for Using Electrochemical Dilatometry as Operando Tool in Battery and Supercapacitor Research. Energy Technology <link>

  • Liangtao Yang, Yanan Sun, Philipp Adelhelm (2022) Electrochemical Properties of Layered NaxNix/2Mn1−x/2O2 (0.5 ≤ x ≤ 1.1) with P3 Structure as Cathode for Sodium-Ion Batteries. Energy Technology <link>

  • Micha P Fertig, Karl Skadell, Matthias Schulz, Cornelius Dirksen, Philipp Adelhelm, Michael Stelter (2022) From High- to Low-Temperature: The Revival of Sodium-Beta Alumina for Sodium Solid-State Batteries. Batteries & Supercaps <link>
  • Jan Speulmanns, Alireza M Kia, Sascha Bönhardt, Wenke Weinreich, Philipp Adelhelm (2021) Atomic layer deposition of textured Li4Ti5O12: A high-power and long-cycle life anode for lithium-ion thin-film batteries. Small <link>

  • Ines Escher, Guillermo A Ferrero, Mustafa Goktas, Philipp Adelhelm (2021)  In situ (operando) electrochemical dilatometry as a method to distinguish charge storage mechanisms and metal plating processes for sodium and lithium ions in hard carbon battery electrodes. Advanced Materials Interfaces. <link>

  • Liangtao Yang, Liang-Yin Kuo, Juan Miguel López del Amo, Prasant Kumar Nayak, Katherine A Mazzio, Sebastian Maletti, Daria Mikhailova, Lars Giebeler, Payam Kaghazchi, Teófilo Rojo, Philipp Adelhelm (2021)  Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries. Advanced Functional Materials. <link>

  • Suning Gao, Zaichun Liu, Liangtao Yang, Jie Shao, Qunting Qu, Yuping Wu, Philipp Adelhelm, Rudolf Holze (2021)  Fabrication of S, N-Doped Carbon-Coated SnS2/SnS Heterostructures Supported by Hollow Carbon Microspheres for Sodium-Ion Storage. Journal of The Electrochemical Society. <link>

  • Ines Escher, Yuliia Kravets. Guillermo Alvarez, Philipp Adelhelm (2021) Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodium-ion Batteries Followed by in situ Electrochemistral Dilatometry. Energy Technology  <link>

  • Thangavelu Palaniselvam, Binson Babu, Moon Hyein, Ivana Hasa, Aggunda L Santhosha, Mustafa Goktas, Ya-Nan Sun, Li Zhao, Bao-Hang Han, Stefano Passerini, Andrea Balducci, Philipp Adelhelm (2021)  Tin containing graphite for sodium-ion batteries and hybrid capacitors. Batteries & Supercaps  <link>

  • Ivana Hasa, Sathiya Mariyappan, Damien Saurel, Philipp Adelhelm, Alexey Y Koposov, Christian Masquelier, Laurence Croguennec, Montserrat Casas-Cabanas (2021)  Challenges of today for Na-based batteries of the future: from materials to cell metrics. Journal of Power Sources  <link>
  • Hande Alptekin, Heather Au, Anders Jansen, Emilia Olsson, Mustafa Goktas, Thomas Headen, Philipp Adelhelm, Qiong Cai, Alan Drew, Maria-Magdalena Titirici (2020) Sodium Storage Mechanism Investigations Through Structural Changes in Hard Carbons ACS. Applied Energy Materials<link>

  • Aggunda L Santhosha, N Nazer, Raimund Koerver, Simon Randau, Felix H Richter, Dominik A Weber, Joern Kulisch, Torben Adermann, Jürgen Janek, Philipp Adelhelm (2020) Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Advanced Energy Materials 2002394. <link>

  • Wolfgang Brehm, Aggunda L Santhosha, Zhenggang Zhang, Christof Neumann, Andrey Turchanin, Martin Seyring, Markus Rettenmayr, Johannes R Buchheim, Philipp Adelhelm (2020) Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes. Journal of Power Sources Advances 6: 100031. <link>

  • Liangtao Yang, Juan Miguel López del Amo, Zulipiya Shadike, Seong-Min Bak, Francisco Bonilla, Montserrat Galcerán, Prasant Kumar Nayak, Johannes Rolf Buchheim, Xiao-Qing Yang, Teófilo Rojo, Philipp Adelhelm (2020) A Co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Advanced Functional Materials 2003364. <link>

  • Thangavelu Palaniselvam, Charan Mukundan, Ivana Hasa, Aggunda L Santhosha, Mustafa Göktas, Moon Hyein, Mirco Ruttert, Richard Schmuch, Kilian Pollok, Falko Langenhorst, Martin Winter, Stefano Passerini, Philipp Adelhelm (2020) Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Advanced Functional Materials 2004798. <link>

  • Suning Gao, Liangtao Yang, Zaichun Liu, Jie Shao, Qunting Qu, Masud Hossain, Yuping Wu, Philipp Adelhelm, Rudolf Holze (2020) Carbon‐Coated SnS Nanosheets Supported on Porous Microspheres as Negative Electrode Material for Sodium‐Ion Batteries. Energy Technology<link>

  • Sun, Y. N., Göktas, M., Zhao, L., Adelhelm, P., & Han, B. H. (2020). Ultrafine SnO2 nanoparticles anchored on N, P-doped porous carbon as anodes for high performance lithium-ion and sodium-ion batteries. Journal of Colloid and Interface Science, 572,122-132. <link> 

  •  Santhosha, A. L., Medenbach, L., Palaniselvam, T., & Adelhelm, P. (2020). Sodium storage behavior of exfoliated MoS2 as electrode material for solid-state batteries with Na3PS4 as solid electrolyte. The Journal of Physical Chemistry C. <link>


  •  Brehm, W., Santhosha, A. L., Zhang, Z., Neumann, C., Turchanin, A.,
    Martin, A., … & Adelhelm, P. (2020). Copper thiophosphate (Cu3PS4) as electrode for sodium‐ion batteries with ether electrolyte. Advanced Functional Materials, 1910583. <link>

  •  Ohno, S., Bernges, T., Buchheim, J., Duchardt, M., Hatz, A. K., Kraft, M. A., … & Tsuji, F. (2020). How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Letters5(3), 910-915. <link>

  •  Schröder, D., Janek, J., & Adelhelm, P. (2020). Nonlithium aprotic metal/oxygen batteries using Na, K, Mg, or Ca as metal anode. Encyclopedia of Electrochemistry: Online, 1-29. <link>

  •  Nozari, V., Calahoo, C., Tuffnell, J. M., Adelhelm, P., Wondraczek, K., Dutton, S. E., … & Wondraczek, L. (2020). Sodium ion conductivity in Superionic iL-impregnated Metal-organic frameworks: enhancing Stability through Structural Disorder. Scientific reports10(1), 1-9. <link>

  •  Medenbach, L., Hartmann, P., Janek, J., Stettner, T., Balducci, A., Dirksen, C., … & Adelhelm, P. (2020). A sodium polysulfide battery with liquid/solid electrolyte: Improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technology8(3), 1901200. <link>

  •  Sun, Y. N., Yang, L., Sui, Z. Y., Zhao, L., Goktas, M., Zhou, H. Y., … & Han, B. H. (2019). Synthesis and thermodynamic investigation of MnO nanoparticle anchored N-doped porous carbon as the anode for Li-ion and Na-ion batteries. Materials Chemistry Frontiers3(12), 2728-2737. <link>

  •  Lenchuk, O., Adelhelm, P., & Mollenhauer, D. (2019). New insights into the origin of unstable sodium graphite intercalation compounds. Physical Chemistry Chemical Physics21(35), 19378-19390. <link>

  •  Göktas, M., Bolli, C., Buchheim, J., Berg, E. J., Novák, P., Bonilla, F., … & Adelhelm, P. (2019). Stable and unstable diglyme-based electrolytes for batteries with sodium or graphite as electrode. ACS Applied Materials & Interfaces11(36), 32844-32855. <link>

  •  Li, Y., Lu, Y., Adelhelm, P., Titirici, M. M., & Hu, Y. S. (2019). Intercalation chemistry of graphite: Alkali metal ions and beyond. Chemical Society Reviews48(17), 4655-4687. <link>

  •  Brehm, W., Buchheim, J. R., & Adelhelm, P. (2019). Reactive and nonreactive ball milling of tin‐antimony (Sn‐Sb) composites and their use as electrodes for sodium‐ion batteries with glyme electrolyte. Energy Technology7(10), 1900389. <link>

  •  Das, S. K., Palaniselvam, T., & Adelhelm, P. (2019). Electrochemical study on the rechargeability of TiO2 as electrode material for Al-ion batteries with chloroaluminate ionic liquid electrolyte. Solid State Ionics340, 115017. <link>

  •  Lenchuk, O., Adelhelm, P., & Mollenhauer, D. (2019). Comparative study of density functionals for the description of lithium‐graphite intercalation compounds. Journal of Computational Chemistry40(27), 2400-2412. <link>

  •  Nayak, P. K., Yang, L., Pollok, K., Langenhorst, F., Aurbach, D., & Adelhelm, P. (2019). Investigation of Li1.17Ni0.20Mn0.53Co0.10O2 as an interesting Li‐ and Mn‐rich layered oxide cathode material through electrochemistry, microscopy, and in situ electrochemical dilatometry. ChemElectroChem6(10), 2812-2819. <link>

  •  Santhosha, A. L., Nayak, P. K., Pollok, K., Langenhorst, F., & Adelhelm, P. (2019). Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries. The Journal of Physical Chemistry C123(19), 12126-12134. <link>

  •  Santhosha, A. L., Medenbach, L., Buchheim, J. R., & Adelhelm, P. (2019). The indium-lithium electrode in solid‐state lithium‐ion batteries: Phase formation, redox potentials, and interface stability. Batteries & Supercaps2(6), 524-529. <link>

  •  Palaniselvam, T., Göktas, M., Anothumakkool, B., Sun, Y. N., Schmuch, R., Zhao, L., … & Adelhelm, P. (2019). Sodium storage and electrode dynamics of tin-carbon composite electrodes from bulk precursors for sodium‐ion batteries. Advanced Functional Materials29(18), 1900790. <link>

  •  Nayak, P. K., Yang, L., Pollok, K., Langenhorst, F., Wondraczek, L., & Adelhelm, P. (2019). Electrochemical performance and ageing mechanisms of sol‐gel synthesized Na2/3[Mn3/5Fe2/5]O2 for sodium‐ion batteries. Batteries & Supercaps2(1), 104-111. <link>
  • Janek, J., & Adelhelm, P. (2018). Next generation technologies. In Lithium-Ion Batteries: Basics and Applications (pp. 187-207). Springer, Berlin, Heidelberg. <link>

  •  Medenbach, L., Escher, I., Köwitsch, N., Armbrüster, M., Zedler, L., Dietzek, B., & Adelhelm, P. (2018). Sulfur spillover on carbon materials and possible impacts on metal-sulfur batteries. Angewandte Chemie International Edition57(41), 13666-13670. <link>

  •  Göktas, M., Akduman, B., Huang, P., Balducci, A., & Adelhelm, P. (2018). Temperature-induced activation of graphite co-intercalation reactions for glymes and crown ethers in sodium-ion batteries. The Journal of Physical Chemistry C122(47), 26816-26824. <link>

  •  Adelhelm, P. (2018). The energy challenge, batteries, and why simple math matters. Angewandte Chemie International Edition57(23), 6710-6711. <link>

  •  Stettner, T., Huang, P., Goktas, M., Adelhelm, P., & Balducci, A. (2018). Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices. The Journal of Chemical Physics148(19), 193825. <link>

  •  Göktas, M., Bolli, C., Berg, E. J., Novák, P., Pollok, K., Langenhorst, F., … & Adelhelm, P. (2018). Graphite as cointercalation electrode for sodium‐ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI). Advanced Energy Materials8(16), 1702724. <link>

  •  Nayak, P. K., Yang, L., Brehm, W., & Adelhelm, P. (2018). From lithium‐ion to sodium‐ion batteries: Advantages, challenges, and surprises. Angewandte Chemie International Edition57(1), 102-120. <link>
  •  Nayak, P. K., Erickson, E. M., Schipper, F., Penki, T. R., Munichandraiah, N., Adelhelm, P., … & Aurbach, D. (2018). Review on challenges and recent advances in the electrochemical performance of high capacity Li‐and Mn‐rich cathode materials for Li‐ion batteries. Advanced Energy Materials8(8), 1702397. <link>

  •  Medenbach, L., & Adelhelm, P. (2019). Cell concepts of metal-sulfur batteries (Metal 5 Li, Na, K, Mg): Strategies for using sulfur in energy storage applications. In Electrochemical Energy Storage (pp. 101-125). Springer, Cham. <link>

  •  Medenbach, L., Bender, C. L., Haas, R., Mogwitz, B., Pompe, C., Adelhelm, P., … & Janek, J. (2017). Origins of dendrite formation in sodium-oxygen batteries and possible countermeasures. Energy Technology5(12), 2265-2274. <link>

  •  Klein, F., Pinedo, R., Berkes, B. B., Janek, J., & Adelhelm, P. (2017). Kinetics and degradation processes of CuO as conversion electrode for sodium-ion batteries: An electrochemical study combined with pressure monitoring and DEMS. The Journal of Physical Chemistry C121(16), 8679-8691. <link>
  •  Jache, B., Binder, J. O., Abe, T., & Adelhelm, P. (2016). A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Physical Chemistry Chemical Physics18(21), 14299-14316. <link>

  •  Pinedo, R., Weber, D. A., Bergner, B., Schröder, D., Adelhelm, P., & Janek, J. (2016). Insights into the chemical nature and formation mechanisms of discharge products in Na-O2 batteries by means of operando x-ray diffraction. The Journal of Physical Chemistry C120(16), 8472-8481. <link>

  •  Das, S. K., Jache, B., Lahon, H., Bender, C. L., Janek, J., & Adelhelm, P. (2016). Graphene mediated improved sodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte. Chemical Communications52(7), 1428-1431. <link>

  •  Busche, M. R., Drossel, T., Leichtweiss, T., Weber, D. A., Falk, M., Schneider, M., … & Janek, J. (2016). Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chemistry8(5), 426-434. <link>

  •  Bender, C. L., Schröder, D., Pinedo, R., Adelhelm, P., & Janek, J. (2016). One‐ or two‐electron transfer? The ambiguous nature of the discharge products in sodium-oxygen batteries. Angewandte Chemie International Edition55(15), 4640-4649. <link>

  •  Klein, F., Pinedo, R., Hering, P., Polity, A., Janek, J., & Adelhelm, P. (2016). Reaction mechanism and surface film formation of conversion materials for lithium-and sodium-ion batteries: An XPS case study on sputtered copper oxide (CuO) thin film model electrodes. The Journal of Physical Chemistry C120(3), 1400-1414. <link>
  • Adelhelm, P., Hartmann, P., Bender, C. L., Busche, M., Eufinger, C., & Janek, J. (2015). From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein Journal of Nanotechnology6(1), 1016-1055. <link>

  •  Bender, C. L., Jache, B., Adelhelm, P., & Janek, J. (2015). Sodiated carbon: A reversible anode for sodium-oxygen batteries and route for the chemical synthesis of sodium superoxide (NaO2). Journal of Materials Chemistry A3(41), 20633-20641. <link>

  •  Hartmann, P., Heinemann, M., Bender, C. L., Graf, K., Baumann, R. P., Adelhelm, P., … & Janek, J. (2015). Discharge and charge reaction paths in sodium-oxygen batteries: Does NaO2 form by direct electrochemical growth or by precipitation from solution? The Journal of Physical Chemistry C119(40), 22778-22786. <link>
  • Jache, B., & Adelhelm, P. (2014). Use of graphite as a highly reversible electrode with superior cycle life for sodium‐ion batteries by making use of co‐intercalation phenomena. Angewandte Chemie International Edition53(38), 10169-10173. <link>

  •  Busche, M. R., Adelhelm, P., Sommer, H., Schneider, H., Leitner, K., & Janek, J. (2014). Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources259, 289-299. <link>

  •  Bhide, A., Hofmann, J., Dürr, A. K., Janek, J., & Adelhelm, P. (2014). Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7 CoO2Physical Chemistry Chemical Physics16(5), 1987-1998. <link>

  •  Jache, B., Mogwitz, B., Klein, F., & Adelhelm, P. (2014). Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition. Journal of Power Sources247, 703-711. <link>

  •  Hartmann, P., Heinemann, M., Bender, C. L., Graf, K., Baumann, R. P., Adelhelm, P., … & Janek, J. (2015). Discharge and charge reaction paths in sodium-oxygen batteries: Does NaO2 form by direct electrochemical growth or by precipitation from solution? The Journal of Physical Chemistry C119(40), 22778-22786. <link>
  • Janek, J., & Adelhelm, P. (2013). Zukunftstechnologien. In Handbuch Lithium-Ionen-Batterien (pp. 199-217). Springer Vieweg, Berlin, Heidelberg. <link>

  •  Klein, F., Jache, B., Bhide, A., & Adelhelm, P. (2013). Conversion reactions for sodium-ion batteries. Physical Chemistry Chemical Physics15(38), 15876-15887. <link>

  •  Hartmann, P., Bender, C. L., Vračar, M., Dürr, A. K., Garsuch, A., Janek, J., & Adelhelm, P. (2013). A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials12(3), 228-232. <link>

  •  Wenzel, S., Metelmann, H., Raiß, C., Dürr, A. K., Janek, J., & Adelhelm, P. (2013). Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. Journal of Power Sources243, 758-765. <link>

  •  Hartmann, P., Bender, C. L., Sann, J., Dürr, A. K., Jansen, M., Janek, J., & Adelhelm, P. (2013). A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Physical Chemistry Chemical Physics15(28), 11661-11672. <link>
  •  Jache, B., Neumann, C., Becker, J., Smarsly, B. M., & Adelhelm, P. (2012). Towards commercial products by nanocasting: Characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure. Journal of Materials Chemistry22(21), 10787-10794. <link>
  •   Wenzel, S., Hara, T., Janek, J., & Adelhelm, P. (2011). Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy & Environmental Science4(9), 3342-3345. <link>
  •  de Jongh, P. E., & Adelhelm, P. A. (2013). Nanoparticles and 3D supported nanomaterials. Handbook of Hydrogen Storage, 279. <link>

  •  Adelhelm, P., & De Jongh, P. E. (2011). The impact of carbon materials on the hydrogen storage properties of light metal hydrides. Journal of Materials Chemistry21(8), 2417-2427. <link>

  •  de Jongh, P. E., & Adelhelm, P. (2010). Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals. ChemSusChem3(12), 1332-1348. <link>
  •  Hu, Y. S., Adelhelm, P., Smarsly, B. M., Hore, S., Antonietti, M., & Maier, J. (2007). Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high‐rate capability. Advanced Functional Materials17(12), 1873-1878. <link>